Understanding molecular mechanisms in cell signaling through natural and artificial sequence variation

The functionally tolerated sequence space of proteins can now be explored in an unprecedented way, owing to the expansion of genomic databases and the development of high-throughput methods to interrogate protein function. For signaling proteins, several recent studies have shown how the analysis of sequence variation leverages the available protein-structure information to provide new insights into specificity and allosteric regulation. In this Review, we discuss recent work that illustrates how this emerging approach is providing a deeper understanding of signaling proteins.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

cancel any time

Subscribe to this journal

Receive 12 print issues and online access

206,07 € per year

only 17,17 € per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

The simplicity of protein sequence-function relationships

Article Open access 11 September 2024

Mapping the energetic and allosteric landscapes of protein binding domains

Article 06 April 2022

Inferring the molecular and phenotypic impact of amino acid variants with MutPred2

Article Open access 20 November 2020

References

  1. Song, Y. et al. High-resolution comparative modeling with RosettaCM. Structure21, 1735–1742 (2013). ArticleCASPubMedGoogle Scholar
  2. Webb, B. & Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics15, 5.6.1–5.6.32 (2014). ArticleGoogle Scholar
  3. Clapham, D. E. Calcium signaling. Cell131, 1047–1058 (2007). ArticleCASPubMedGoogle Scholar
  4. Berman, H. M. et al. The cAMP binding domain: an ancient signaling module. Proc. Natl. Acad. Sci. USA102, 45–50 (2005). ArticleCASPubMedGoogle Scholar
  5. Huang, P., Chandra, V. & Rastinejad, F. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu. Rev. Physiol.72, 247–272 (2010). ArticleCASPubMedPubMed CentralGoogle Scholar
  6. Kornev, A. P. & Taylor, S. S. Dynamics-driven allostery in protein kinases. Trends Biochem. Sci.40, 628–647 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  7. Shi, Y. Serine/threonine phosphatases: mechanism through structure. Cell139, 468–484 (2009). ArticleCASPubMedGoogle Scholar
  8. Tonks, N. K. Protein tyrosine phosphatases: from genes, to function, to disease. Nat. Rev. Mol. Cell Biol.7, 833–846 (2006). ArticleCASPubMedGoogle Scholar
  9. Shah, N. H., Amacher, J. F., Nocka, L. M. & Kuriyan, J. The Src module: an ancient scaffold in the evolution of cytoplasmic tyrosine kinases. Crit. Rev. Biochem. Mol. Biol.53, 535–563 (2018). ArticleCASPubMedPubMed CentralGoogle Scholar
  10. Pawson, T. & Scott, J. D. Signaling through scaffold, anchoring, and adaptor proteins. Science278, 2075–2080 (1997). ArticleCASPubMedGoogle Scholar
  11. Lorenz, S., Cantor, A. J., Rape, M. & Kuriyan, J. Macromolecular juggling by ubiquitylation enzymes. BMC Biol.11, 65 (2013). ArticlePubMedPubMed CentralCASGoogle Scholar
  12. Wittinghofer, A. & Vetter, I. R. Structure-function relationships of the G domain, a canonical switch motif. Annu. Rev. Biochem.80, 943–971 (2011). ArticleCASPubMedGoogle Scholar
  13. Hilger, D., Masureel, M. & Kobilka, B. K. Structure and dynamics of GPCR signaling complexes. Nat. Struct. Mol. Biol.25, 4–12 (2018). ArticleCASPubMedPubMed CentralGoogle Scholar
  14. Kuriyan, J. & Eisenberg, D. The origin of protein interactions and allostery in colocalization. Nature450, 983–990 (2007). ArticleCASPubMedGoogle Scholar
  15. O’Rourke, L. & Ladbury, J. E. Specificity is complex and time consuming: mutual exclusivity in tyrosine kinase-mediated signaling. Acc. Chem. Res.36, 410–416 (2003). ArticlePubMedCASGoogle Scholar
  16. Kapp, O. H. et al. Alignment of 700 globin sequences: extent of amino acid substitution and its correlation with variation in volume. Protein Sci.4, 2179–2190 (1995). ArticleCASPubMedPubMed CentralGoogle Scholar
  17. de Juan, D., Pazos, F. & Valencia, A. Emerging methods in protein co-evolution. Nat. Rev. Genet.14, 249–261 (2013). ArticlePubMedCASGoogle Scholar
  18. Marks, D. S. et al. Protein 3D structure computed from evolutionary sequence variation. PLoS One6, e28766 (2011). ArticleCASPubMedPubMed CentralGoogle Scholar
  19. Morcos, F. et al. Direct-coupling analysis of residue coevolution captures native contacts across many protein families. Proc. Natl. Acad. Sci. USA108, E1293–E1301 (2011). ArticleCASPubMedPubMed CentralGoogle Scholar
  20. Lockless, S. W. & Ranganathan, R. Evolutionarily conserved pathways of energetic connectivity in protein families. Science286, 295–299 (1999). ArticleCASPubMedGoogle Scholar
  21. Halabi, N., Rivoire, O., Leibler, S. & Ranganathan, R. Protein sectors: evolutionary units of three-dimensional structure. Cell138, 774–786 (2009). ArticleCASPubMedPubMed CentralGoogle Scholar
  22. Süel, G. M., Lockless, S. W., Wall, M. A. & Ranganathan, R. Evolutionarily conserved networks of residues mediate allosteric communication in proteins. Nat. Struct. Biol.10, 59–69 (2003). ArticlePubMedCASGoogle Scholar
  23. Teşileanu, T., Colwell, L. J. & Leibler, S. Protein sectors: statistical coupling analysis versus conservation. PLOS Comput. Biol.11, e1004091 (2015). ArticlePubMedPubMed CentralCASGoogle Scholar
  24. Pauling, L., Zuckerkandl, E., Henriksen, T. & Lövstad, R. Chemical paleogenetics:. molecular ‘restoration studies’ of extinct forms of life. Acta Chem. Scand.17 (Suppl.), 9–16 (1963). ArticleGoogle Scholar
  25. Malcolm, B. A., Wilson, K. P., Matthews, B. W., Kirsch, J. F. & Wilson, A. C. Ancestral lysozymes reconstructed, neutrality tested, and thermostability linked to hydrocarbon packing. Nature345, 86–89 (1990). ArticleCASPubMedGoogle Scholar
  26. Stackhouse, J., Presnell, S. R., McGeehan, G. M., Nambiar, K. P. & Benner, S. A. The ribonuclease from an extinct bovid ruminant. FEBS Lett.262, 104–106 (1990). ArticleCASPubMedGoogle Scholar
  27. Bowie, J. U., Reidhaar-Olson, J. F., Lim, W. A. & Sauer, R. T. Deciphering the message in protein sequences: tolerance to amino acid substitutions. Science247, 1306–1310 (1990). ArticleCASPubMedGoogle Scholar
  28. Reidhaar-Olson, J. F. & Sauer, R. T. Combinatorial cassette mutagenesis as a probe of the informational content of protein sequences. Science241, 53–57 (1988). ArticleCASPubMedGoogle Scholar
  29. Lim, W. A. & Sauer, R. T. Alternative packing arrangements in the hydrophobic core of lambda repressor. Nature339, 31–36 (1989). ArticleCASPubMedGoogle Scholar
  30. Azam, M., Latek, R. R. & Daley, G. Q. Mechanisms of autoinhibition and STI-571/imatinib resistance revealed by mutagenesis of BCR-ABL. Cell112, 831–843 (2003). ArticleCASPubMedGoogle Scholar
  31. Nagar, B. et al. Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell112, 859–871 (2003). ArticleCASPubMedGoogle Scholar
  32. Hantschel, O. et al. A myristoyl/phosphotyrosine switch regulates c-Abl. Cell112, 845–857 (2003). ArticleCASPubMedGoogle Scholar
  33. Lee, B. J. & Shah, N. P. Identification and characterization of activating ABL1 1b kinase mutations: impact on sensitivity to ATP-competitive and allosteric ABL1 inhibitors. Leukemia31, 1096–1107 (2017). ArticleCASPubMedGoogle Scholar
  34. Mukherjee, S. et al. Genomes OnLine Database (GOLD) v.6: data updates and feature enhancements. Nucleic Acids Res.45(D1), D446–D456 (2017). ArticleCASPubMedGoogle Scholar
  35. Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet.17, 333–351 (2016). ArticleCASPubMedGoogle Scholar
  36. Kosuri, S. & Church, G. M. Large-scale de novo DNA synthesis: technologies and applications. Nat. Methods11, 499–507 (2014). ArticleCASPubMedPubMed CentralGoogle Scholar
  37. Packer, M. S. & Liu, D. R. Methods for the directed evolution of proteins. Nat. Rev. Genet.16, 379–394 (2015). ArticleCASPubMedGoogle Scholar
  38. Hochberg, G. K. A. & Thornton, J. W. Reconstructing ancient proteins to understand the causes of structure and function. Annu. Rev. Biophys.46, 247–269 (2017). ArticleCASPubMedPubMed CentralGoogle Scholar
  39. Fowler, D. M. & Fields, S. Deep mutational scanning: a new style of protein science. Nat. Methods11, 801–807 (2014). ArticleCASPubMedPubMed CentralGoogle Scholar
  40. Rojas, A. M., Fuentes, G., Rausell, A. & Valencia, A. The Ras protein superfamily: evolutionary tree and role of conserved amino acids. J. Cell Biol.196, 189–201 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  41. Manning, G., Plowman, G. D., Hunter, T. & Sudarsanam, S. Evolution of protein kinase signaling from yeast to man. Trends Biochem. Sci.27, 514–520 (2002). ArticleCASPubMedGoogle Scholar
  42. Laudet, V., Hänni, C., Coll, J., Catzeflis, F. & Stéhelin, D. Evolution of the nuclear receptor gene superfamily. EMBO J.11, 1003–1013 (1992). ArticleCASPubMedPubMed CentralGoogle Scholar
  43. Fredriksson, R., Lagerström, M. C., Lundin, L.-G. & Schiöth, H. B. The G-protein-coupled receptors in the human genome form five main families: phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol.63, 1256–1272 (2003). ArticleCASPubMedGoogle Scholar
  44. Ortlund, E. A., Bridgham, J. T., Redinbo, M. R. & Thornton, J. W. Crystal structure of an ancient protein: evolution by conformational epistasis. Science317, 1544–1548 (2007). ArticleCASPubMedPubMed CentralGoogle Scholar
  45. Bridgham, J. T., Ortlund, E. A. & Thornton, J. W. An epistatic ratchet constrains the direction of glucocorticoid receptor evolution. Nature461, 515–519 (2009). ArticleCASPubMedPubMed CentralGoogle Scholar
  46. Harms, M. J. & Thornton, J. W. Historical contingency and its biophysical basis in glucocorticoid receptor evolution. Nature512, 203–207 (2014). ArticleCASPubMedPubMed CentralGoogle Scholar
  47. McKeown, A. N. et al. Evolution of DNA specificity in a transcription factor family produced a new gene regulatory module. Cell159, 58–68 (2014). ArticleCASPubMedPubMed CentralGoogle Scholar
  48. Anderson, D. W., McKeown, A. N. & Thornton, J. W. Intermolecular epistasis shaped the function and evolution of an ancient transcription factor and its DNA binding sites. eLife4, e07864 (2015). ArticlePubMedPubMed CentralCASGoogle Scholar
  49. Starr, T. N., Picton, L. K. & Thornton, J. W. Alternative evolutionary histories in the sequence space of an ancient protein. Nature549, 409–413 (2017). ArticleCASPubMedPubMed CentralGoogle Scholar
  50. Miller, C. J. & Turk, B. E. Homing in: mechanisms of substrate targeting by protein kinases. Trends Biochem. Sci.43, 380–394 (2018). ArticleCASPubMedPubMed CentralGoogle Scholar
  51. Songyang, Z. et al. Catalytic specificity of protein-tyrosine kinases is critical for selective signalling. Nature373, 536–539 (1995). ArticleCASPubMedGoogle Scholar
  52. Hutti, J. E. et al. A rapid method for determining protein kinase phosphorylation specificity. Nat. Methods1, 27–29 (2004). ArticleCASPubMedGoogle Scholar
  53. Shah, N. H. et al. An electrostatic selection mechanism controls sequential kinase signaling downstream of the T cell receptor. eLife5, e20105 (2016). ArticlePubMedPubMed CentralCASGoogle Scholar
  54. Shah, N. H., Löbel, M., Weiss, A. & Kuriyan, J. Fine-tuning of substrate preferences of the Src-family kinase Lck revealed through a high-throughput specificity screen. eLife7, e35190 (2018). ArticlePubMedPubMed CentralGoogle Scholar
  55. Cantor, A. J., Shah, N. H. & Kuriyan, J. Deep mutational analysis reveals functional trade-offs in the sequences of EGFR autophosphorylation sites. Proc. Natl. Acad. Sci. USA115, E7303–E7312 (2018). ArticleCASPubMedPubMed CentralGoogle Scholar
  56. Howard, C. J. et al. Ancestral resurrection reveals evolutionary mechanisms of kinase plasticity. eLife3, e04126 (2014). ArticlePubMed CentralCASGoogle Scholar
  57. Miller, M. L. et al. Linear motif atlas for phosphorylation-dependent signaling. Sci. Signal.1, ra2 (2008). ArticlePubMedPubMed CentralCASGoogle Scholar
  58. Creixell, P. et al. Unmasking determinants of specificity in the human kinome. Cell163, 187–201 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  59. Kornev, A. P., Haste, N. M., Taylor, S. S. & Eyck, L. F. T. Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. Proc. Natl Acad. Sci. USA103, 17783–17788 (2006). ArticleCASPubMedPubMed CentralGoogle Scholar
  60. Kornev, A. P., Taylor, S. S. & Ten Eyck, L. F. A helix scaffold for the assembly of active protein kinases. Proc. Natl Acad. Sci. USA105, 14377–14382 (2008). ArticleCASPubMedPubMed CentralGoogle Scholar
  61. Creixell, P. et al. Kinome-wide decoding of network-attacking mutations rewiring cancer signaling. Cell163, 202–217 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  62. Heredia, J. D. et al. Mapping interaction sites on human chemokine receptors by deep mutational scanning. J. Immunol.200, 3825–3839 (2018). ArticleCASPubMedGoogle Scholar
  63. Miles, T. F. et al. Viral GPCR US28 can signal in response to chemokine agonists of nearly unlimited structural degeneracy. eLife7, e35850 (2018). ArticlePubMedPubMed CentralGoogle Scholar
  64. Flock, T. et al. Selectivity determinants of GPCR-G-protein binding. Nature545, 317–322 (2017). ArticleCASPubMedPubMed CentralGoogle Scholar
  65. Flock, T. et al. Universal allosteric mechanism for Gα activation by GPCRs. Nature524, 173–179 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  66. Pickart, C. M. & Eddins, M. J. Ubiquitin: structures, functions, mechanisms. Biochim. Biophys. Acta1695, 55–72 (2004). ArticleCASPubMedGoogle Scholar
  67. Winget, J. M. & Mayor, T. The diversity of ubiquitin recognition: hot spots and varied specificity. Mol. Cell38, 627–635 (2010). ArticleCASPubMedGoogle Scholar
  68. Roscoe, B. P., Thayer, K. M., Zeldovich, K. B., Fushman, D. & Bolon, D. N. A. Analyses of the effects of all ubiquitin point mutants on yeast growth rate. J. Mol. Biol.425, 1363–1377 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  69. Mavor, D. et al. Determination of ubiquitin fitness landscapes under different chemical stresses in a classroom setting. eLife5, e15802 (2016). ArticlePubMedPubMed CentralGoogle Scholar
  70. Mavor, D. et al. Extending chemical perturbations of the ubiquitin fitness landscape in a classroom setting reveals new constraints on sequence tolerance. Biol. Open7, bio036103 (2018). ArticlePubMedPubMed CentralGoogle Scholar
  71. Ernst, A. et al. A strategy for modulation of enzymes in the ubiquitin system. Science339, 590–595 (2013). ArticleCASPubMedGoogle Scholar
  72. Zhang, W. et al. System-wide modulation of HECT E3 ligases with selective ubiquitin variant probes. Mol. Cell62, 121–136 (2016). ArticleCASPubMedPubMed CentralGoogle Scholar
  73. Zhang, Y. et al. Conformational stabilization of ubiquitin yields potent and selective inhibitors of USP7. Nat. Chem. Biol.9, 51–58 (2013). ArticleCASPubMedGoogle Scholar
  74. Tang, C., Iwahara, J. & Clore, G. M. Visualization of transient encounter complexes in protein-protein association. Nature444, 383–386 (2006). ArticleCASPubMedGoogle Scholar
  75. Hu, J. et al. Kinase regulation by hydrophobic spine assembly in cancer. Mol. Cell. Biol.35, 264–276 (2015). ArticlePubMedCASGoogle Scholar
  76. Creixell, P. et al. Hierarchical organization endows the kinase domain with regulatory plasticity. Cell Syst.7, 371–383.e4 (2018). ArticleCASPubMedPubMed CentralGoogle Scholar
  77. Wilson, C. et al. Using ancient protein kinases to unravel a modern cancer drug’s mechanism. Science347, 882–886 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  78. Seeliger, M. A. et al. c-Src binds to the cancer drug imatinib with an inactive Abl/c-Kit conformation and a distributed thermodynamic penalty. Structure15, 299–311 (2007). ArticleCASPubMedGoogle Scholar
  79. Dar, A. C., Lopez, M. S. & Shokat, K. M. Small molecule recognition of c-Src via the Imatinib-binding conformation. Chem. Biol.15, 1015–1022 (2008). ArticleCASPubMedPubMed CentralGoogle Scholar
  80. Seeliger, M. A. et al. Equally potent inhibition of c-Src and Abl by compounds that recognize inactive kinase conformations. Cancer Res.69, 2384–2392 (2009). ArticleCASPubMedPubMed CentralGoogle Scholar
  81. Pitsawong, W. et al. Dynamics of human protein kinase Aurora A linked to drug selectivity. eLife7, e36656 (2018). ArticlePubMedPubMed CentralGoogle Scholar
  82. Cherfils, J. & Zeghouf, M. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol. Rev.93, 269–309 (2013). ArticleCASPubMedGoogle Scholar
  83. Bandaru, P., Kondo, Y. & Kuriyan, J. The interdependent activation of son-of-sevenless and Ras. Cold Spring Harb. Perspect. Med.https://doi.org/10.1101/cshperspect.a031534 (2018). ArticleGoogle Scholar
  84. Prior, I. A., Lewis, P. D. & Mattos, C. A comprehensive survey of Ras mutations in cancer. Cancer Res.72, 2457–2467 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  85. Bandaru, P. et al. Deconstruction of the Ras switching cycle through saturation mutagenesis. eLife6, e27810 (2017). ArticlePubMedPubMed CentralGoogle Scholar
  86. Salinas, V. H. & Ranganathan, R. Coevolution-based inference of amino acid interactions underlying protein function. eLife7, e34300 (2018). ArticlePubMedPubMed CentralGoogle Scholar
  87. Findlay, G. M. et al. Accurate classification of BRCA1 variants with saturation genome editing. Nature562, 217–222 (2018). ArticleCASPubMedPubMed CentralGoogle Scholar
  88. Pahuja, K. B. et al. Actionable activating oncogenic ERRB2/HER2 transmembrane and juxtamembrane domain mutations. Cancer Cell34, 792–806.e5 (2018). ArticleCASPubMedPubMed CentralGoogle Scholar
  89. Ma, L. et al. CRISPR-Cas9-mediated saturated mutagenesis screen predicts clinical drug resistance with improved accuracy. Proc. Natl Acad. Sci. USA114, 11751–11756 (2017). ArticleCASPubMedPubMed CentralGoogle Scholar
  90. Baretić, D. et al. Structures of closed and open conformations of dimeric human ATM. Sci. Adv.3, e1700933 (2017). ArticlePubMedPubMed CentralCASGoogle Scholar
  91. Bitbol, A.-F., Dwyer, R. S., Colwell, L. J. & Wingreen, N. S. Inferring interaction partners from protein sequences. Proc. Natl Acad. Sci. USA113, 12180–12185 (2016). ArticleCASPubMedPubMed CentralGoogle Scholar
  92. Gueudré, T., Baldassi, C., Zamparo, M., Weigt, M. & Pagnani, A. Simultaneous identification of specifically interacting paralogs and interprotein contacts by direct coupling analysis. Proc. Natl Acad. Sci. USA113, 12186–12191 (2016). ArticlePubMedCASPubMed CentralGoogle Scholar
  93. Hopf, T. A. et al. Sequence co-evolution gives 3D contacts and structures of protein complexes. eLife3, e03430 (2014). ArticlePubMed CentralCASGoogle Scholar
  94. Ovchinnikov, S., Kamisetty, H. & Baker, D. Robust and accurate prediction of residue-residue interactions across protein interfaces using evolutionary information. eLife3, e02030 (2014). ArticlePubMedPubMed CentralGoogle Scholar
  95. Dror, R. O. et al. Structural basis for nucleotide exchange in heterotrimeric G proteins. Science348, 1361–1365 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  96. Romero, P. A. & Arnold, F. H. Exploring protein fitness landscapes by directed evolution. Nat. Rev. Mol. Cell Biol.10, 866–876 (2009). ArticleCASPubMedPubMed CentralGoogle Scholar
  97. Skerker, J. M. et al. Rewiring the specificity of two-component signal transduction systems. Cell133, 1043–1054 (2008). ArticleCASPubMedPubMed CentralGoogle Scholar
  98. Procaccini, A., Lunt, B., Szurmant, H., Hwa, T. & Weigt, M. Dissecting the specificity of protein-protein interaction in bacterial two-component signaling: orphans and crosstalks. PLoS One6, e19729 (2011). ArticleCASPubMedPubMed CentralGoogle Scholar
  99. Coyle, S. M., Flores, J. & Lim, W. A. Exploitation of latent allostery enables the evolution of new modes of MAP kinase regulation. Cell154, 875–887 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar

Acknowledgements

We thank P. Bandaru and R. Ranganathan for insights and stimulating discussions. N.H.S. is a funded by a Damon Runyon–Dale F. Frey Award for Breakthrough Scientists from the Damon Runyon Cancer Research Foundation. J.K. is funded by NIH grant P01 A1091580.

Author information

Authors and Affiliations

  1. Department of Chemistry, Columbia University, New York, NY, USA Neel H. Shah
  2. Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA John Kuriyan
  3. Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA John Kuriyan
  4. California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA John Kuriyan
  5. Howard Hughes Medical Institute, University of California, Berkeley, CA, USA John Kuriyan
  6. Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA John Kuriyan
  1. Neel H. Shah